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Inverse Kinematics of a Reclaimer: Closed-Form Solution by 
Exploiting Geometric Constraints 

Keum-Shik Hong*, Young-Min Kim** and Chintai Choi*** 
(Received October 10, 1996) 

The inverse kinematics of a reclaimer that excavates and transports raw materials in a raw 

yard is investigated. Because of the geometric feature of the equipment, in which scooping 

buckets are attached around a rotating disk, kinematic redundancy occurs in determining the 

join~: variables. Link coordinates are introduced following tile Denavit-Hartenberg representa- 

t i on  For a given excavation point the forward kinematics yields 3 equations in 4 variables. It 

is shown that the rotating disk at the end of the boom provides an extra passive degree of  

freedom. Two approaches are investigated in obtaining an inverse kinematics solution. The first 

method pro-assigns the height of the excavation point, which can be determined through path 

planning. A closed-form solution is obtained for the first approach. The second method exploits 

the orthogonality between the normal vector at an excavation point and the z-axis of  the end 

-effector coordinate system. The geometry near the reclaiming point has been approximated as 

a plane, and the plane equation has been obtained by a least-squares method from 8 adjacent 

points near the point. A closed-form solution is not found for the second approach; however, 

a linear approximate solution is provided. 

Key Words :  Inverse Kinematics, Redundant Manipulator, Passive Degree of Freedom, 

Geometric Constraint, Normal Equation. 

1. Introduction 

The reclaimer is a type of industrial equipment 

that excavates and transports raw materials like 

coal and iron ore in the raw yard of a steel 

company. It can be classified as a type of  a serial 

manipulator. The reclaimer consists of  a main 

body, a boom and a tilted rotating drum. The 

boom is about 50 m long, and can rotate horizon- 

tally and vertically, while the main body moves 

on the rectilinear rail in the raw yard. The re- 

claimer consists of a rotating circular disk with 
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buckets attached to the circumference The circu- 

lar disk lilts at various angles so that the raw 

materials in the buckets can fall on the conveyor 

belt located in the middle part of the boom as the 

buckets rotate. Currently all the information 

about the type, quantity, and location of the raw 

materials to be transferred from the stockyard are 

communicated to an operator and the operator 

manually drives a reclaimer to the spot and exca- 

vates manually. Therefore, in the ewmt of poor 

visibility or at night, it is difficult for the re- 

claimer to approach a desired spot on an ore pile. 

In this paper the inverse kinematics problem of 

finding joint variables for a desired end-effector 

location is investigated. To the best of  the authors 

knowledge no published results for the inverse 

kinematics problem of a reclaimer or other 

related subjects are yet to be found in the litera- 

ture. 

The first step toward automatic transmission of 

raw materials from the raw yard to a blast furnace 
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is to obtain the 3-dimensional  information of a 

materials heap. This is achieved by scanning the 

heap with a laser sensor. With the examination of 

the degrees of freedom of  the reclaimer mecha- 

nism, link coordinates are defined in terms of the 

Denavi t -Har tenberg(D-H)  representation. For  

a given excavation point the forward kinematics 

provides 3 equations; however, the number of 

joint  variables in the equatiOtls is 4. Hence there 

exists one kinematic redundancy in the mecha- 

nism, and it will be shown that one passive degree 

of freedom occurs from the rotating disk at the 

end of boom. In the paper the inverse kinematics 

problem is viewed in two different ways. One is to 

find a solution for a given excavation point in 

space, and the other is to find a solution for a 

given end-effector's location and orientation in 

space. The first approach does not include the 

information of the surrounding environment in 

the problem formulation. Kinematic redundancy 

exists in the 4 DOF mechanism. The excavation 

point needs to be determined by considering how 

to eliminate all the raw materials from the ground 

rather than by attempting to answer the kinematic 

redundancy in the mechanism itself. Hence the 

first approach utilizes the fact that the drum 

height during slewing can be decided beforehand 

through path planning. The second approach 

exploits a geometric constraint such that the circle 

connecting the tips of the buckets should contact 

the surface of the raw materials heap. Hence, 

regarding the rotating disk as a rigid body in 

space, the problem becomes to position a rigid 

body for a given position and orientation in 

space. In this case the manipulator  should have at 

least 6 joints to provide general 6 DOF motion in 

space. However, the reclaimer has only 4 DOF. A 

closed-form solution is obtained for the first 

method; however, a closed-form solution to the 

second approach is not available. Instead a linear 

approximation of the solution to the second 

approach is proposed. 

The contributions of the paper are as follows. 

First, the authors are almost sure that the study in 

the paper is the first and only systematic discus- 

sion on a reclaimer to appear in the literature. No 

single conference or journal  paper has been found 

yet. Secondly, the closed-form inverse kinematics 

solution obtained through path planning has been 

proven reliable by experiments and has been 

implemented in the stockyards of Pohang Steel 

Company, Ltd., in Korea. The paper has the 

following structure. The degrees of freedom of the 

reclaimer is investigated in Sec. 2. In Sec. 3 the 

reference and link coordinates are defined by 

using the D-H representation, and the forward 

kinematics equations are derived. Section 4 inves- 

tigates a closed-form solution for the inverse 

kinematics problem which involves obtaining 

jo int  variables with the assumption that the 

height of slew level of the boom is given through 

path planning. Section 5 investigates the inverse 

kinematics problem for an arbitrary landing 

point. Two approaches are compared in Sec. 6 

and conclusions are given in Sec. 7. 

2. Degree of Freedom 

The degrees of freedom (DOF)  of a mecha- 

nism is the number of independent inputs or 

parameters required to determine the locations of 

all the points in the mechanism. We investigate 

the DOF of the reclaimer with the following 

schematic diagram in Fig. I. 

The rectilinear motion of the main body mov- 

ing on a rail is simplified as a prismatic joint  @, 

and the two rotational motions of the boom are 

simplified as revolute joints @ and @, respec- 

tively. It is also shown that the rotating disk at the 

end of  the boom is connected by a revolute jo in t .  

Therefore, the number of inputs to represent an 

arbitrary point P' on the circumference of  the disk 

is obtained by the following equation (Sandor 

and Erdman, 1984) : 

12 
~ @ '  Links: 1,2,3,4,5 

I Ground Joints: ~@, (~), 3@, @ 

Fig. 1 Reclaimer and its schematic diagram 
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i 
F = A ( 1 - j - 1 )  + ~. f i  (1) 

i=1 

where F = D O F  of  a mechanism, / : n u m b e r  of 

links, ] = n u m b e r  of joints, f i = D O F  of the ith 

joint,  / I = D O F  that the mechanism can have in 

space. 

In the case of the reclaimer l = 5 ,  j = 4  (1 

prismatic and 3 revolute  j o i n t s ) .  Since each 

joint  can have only one degree of freedom, ~ f i =  

4. /1= 6 due to the spatial motion of the mecha- 

nism. Therefore, the degrees of freedom of the 

reclaimer F = 4  is obtained. 

The necessity of  finding the point P' on the 

circumference of link 5 becomes clearer from the 

fact that the location of the point P on a raw 

materials heap determines P'. However, once P' 

contacts P, F becomes 0 which means that there 

is no mobility in the mechanism, here the contact 

point P has been considered as a two DOF joint. 

Now we examine the input-output  relation of 

the mechanism. The 3-dimensional coordinates of 

point  P', (x0, Y0, z0), becomes the output. One 
rectilinear displacement of joint  (3 and two 

rotational displacements of joints ~) and (~) are 

the inputs. Normally three independent inputs 

can determine the location of a point in space; 

however, in the case of  the reclaimer there exists 

an extra link 5 and it provides an extra passive 

degree of freedom in the mechanism. 

3. Coordinate Sys tems  

Figure 2 shows the reference and link coordi- 

nate systems of the reclaimer using the D - H  

r e p r e s e n t a t i o n  ( F u  et al. ,  1987) .  V a r y i n g  

parameters are written in italic and constant 

parameters are written in normal face in the Table 

of  Fig. 2. The 1st link coordinate is attached to 

the main body which moves on the rail. The 2nd 

and 3rd link coordinates indicate that the boom 

can rotate with the angles Oz and t)a, respectively. 

The 4th and 5th link coordinates indicate that the 

rotating disk tilts at the angles of cp and r 

l x ~  4 

Yo 

~Y2 

x 2 

z2 d2 

dl (x0) ~ ,zl 
~02 

a~ (boom) 

~ 4 

x4 ! Y4 . ~ .  Dy~ 

..' Z 5 X5 

i ."" Z 3 

A 6 . . . . . . . . . . . . . . . . . . .  X3 

X6 

a i  

a3 

0 

o'i 
~/2 

~/2 

-~/2 

-~/2 

~/2 

a6 -x/2 

d i  
& 

d~ 

0 

d4 

d6 

0i 
g/2 

g/2 + 02 

03 

-n/2 + O 

r/2 + u 

r 

Fig. 2 Establishing link-coordinate systems and its parameters 
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respectively. Or denotes the angle from the xs axis 

to the xs axis about the z~ axis. 

For  a desired excavation point (x0, y0, zo) in 

the reference coordinate system, the forward 

kinematics provides 3 equations as follows: 

Xo--sin 03{ a6cos Csin Or+s in  r 

- a 6 s i n  r } 

+ c o s  0 a ( - a 6 c o s  r  O r - &  
s in  r  + a3sin 0a+dz (2) 

y 0 - - s i n  02[cos 03{ a~cos Csin 0~ 

+ s i n  r  r  r  Or) } 
- - s in  03(--a6cos r 0~-d6  

sin r + &) + a3cos 031 

+ c o s  02{ cos r  r  r 

cos Or) - a6sin Csin Or } (3) 

z 0 - c o s  &Ecos 03{ a6cos Csin 0~ 

+ s i n  r  r  r  0~) } 

- s i n  03 ( - a6cos  r  Or-d6sin  r 
-bd4) +a3cos  031 

+ s i n  02{ cos r (&cos r - a6sin r  

0~) -- a6sin Csin O, } + d~ (4) 

In Eqs. ( 2 ) ~  (4) the varying joint  parameters 

are d~, 02, 03 and Or. Therefore there exists one 

extra degree of freedom in determining the joint  

variables. The existence of an extra degree of  

freedom can also be seen in Fig. 3, which indi- 

cates infinitely many circles passing through a 

point if the disk is contacting the surface of the 

bulk. 

... .......... . 
. . . . . . . . .  :::i " ' . .  

Po t 

Fig. 3 Infinitely many circles passing through an 
excavation point 

4. Inverse Kinematics(Approach #1) 

In this section we investigate the inverse 

kinematics problem when the drum height is pre- 

assigned while slewing of the boom occurs. This 

approach focuses on how the entire materials can 

be eliminated without leaving any remains on the 

ground. 

4.1 Path planning 
As in Fig. 4 we assume that the reclaimer can 

dig down as much as Rcos r with one slew of the 

boom. Recall that R is the radius of the rotating 

disk, and r is the tilt angle of the disk against the 

vertical plane in the 4th link coordinate frame. 

The solid lines h i = i ( R c o s r  i = l ,  2 . . . . .  

indicate the ith slew level from the ground along 

which the bottom tip of  the disk will cut through. 

Therefore, if the center of  the disk reaches the 

height ht, then the complete removal of raw 

materials can be accomplished. The main objec- 

tive of this section is to determine the initial 

landing point (x0, Y0, zo) i at each slew level. 

Define A h i = x o ~ - h i ,  where Xol is the x-com- 
ponent of  the initial excavation point at the ith 

level. 

4.2 Calculation of Ah, 
We first evaluate Mhl at each slew level. If the 

profile of a raw materials heap is irregular, then 

z/h~ will be different at each level and has to he 

determined at each slew level. However, if the 

shape of the raw materials pile is uniform and the 

overall shape differs only depending on the kind 

of  raw materials, then A h i = d h ,  i = 1 ,  2, --., n, 

can be asserted. In this paper we assume that the 

pile is regular and the slope is uniform. Hence Om 

R c ~  1~'~ 

3'o Ground 
Fig. 4 Slewing levels of boom 
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/ 

Fig. 5 

X0 
V 

VI U 

D, Z0 

Lateral view of the disk projected along the 
z2-axis 

in Fig. 4 is a constant which can be decided once 

the type of  material is given. 

Figure 5 shows a side view of the rotating disk 

which contacts an excavation point�9 The center of 

view point is the origin of  the 5th coordinate 

frame and the view direction is parallel  to the axis 

of z2. The uv-plane in Fig. 5 is a vertical plane 

whose origin is centered at the origin of the 5th 

link coordinate system. The u-axis and v-axis are 

parallel to the ground and x0-axis in Fig. 2, 

respectively. The u 'v ' -coordinate  system indicates 

the rotation of  the uv-coordinate system by 0a- 

Since the disk tilts as much as cp and r the 

projected shape of the disk to the u 'v ' -p lane  

becomes an ellipse. Now the equation of  the 

ellipse in the u 'v ' -coordinate  system becomes 

U'a V'2 --  1 (5) 
(Rcos  r + (Rcos  r 

Also, since the u 'v ' -coordinate  has rotated by 0a, 

the following transformation between the uv- 

coordinate and u 'v ' -coordinate  holds: 

i . ' ] = : [  cosO~sine~][u] (6) 
v" - s in  & cos Oa v 

Therefore, the equation of the ellipse in the uv- 

coordinate system becomes 

(cos Oau+sin Oar) 2 t ( - s i n  Oau+cos Oar) a 
(Rcos r (Rcos r 

=1 (7) 

On the other hand when the boom slews hori- 

zontally, the maximum load occurs at the point 

where the raw materials protrude out most 

toward the reclaimer. The intersection between 

the uv-plane and the ore pile is a line and can be 

written as 

v = t a n  Omu + 7 (8) 

where 7 is the intercept on the v-axis. Substitut- 

ing (8) in to  (7) ,  the r e s u l t i n g  e q u a t i o n  

becomes an equation of only u and 7- Since we 

are interested in the case when the ellipse contacts 

the line, the determinant term of the quadratic 

equation of u, which involves 7, must be zero. 

Hence the value of 7 is determined. Therefore, a 

unique of u is now determined�9 Final ly substitut- 

ing u and 7 in to  (8) ,  v is o b t a i n e d .  The  

results are summarized as follows: 

u : :  - 7( (Rcos  r 2(cos & + s i n  &tan Om)sin&+(Rcos~!2(cos  &tan  Om-.sin 0a!cos 0a } 
{ (Rcos  r  & + s i n  &tan 0a)2+ (Rcos  r  &tan 0 m - s i n  0a) 2 } 

v = t a n  &,u + 7 (9) 

where 

fO(Rcos r ~) 
,/O (Rcos r 2sin2 03 + O (Rcos r 2cos2 & -  P 

P =  (Rcos r &+sin  03tan &)sin  & 
+ (Rcos r &tan & - s i n  &)cos & 

Q =  (R cos 0)2(cos 03+sin &tan &)2+ (R cos r 

(cos&tan 0m-sin &)2 

Now if the center of the rotating disk is located 

at the level hi+~, which implies that the origin of  

the uv-coordinate system is located at hi+l, then 

z lh i=h i+ l -h i - ]  v I. 

Since z/h, is obtained at each level, the xo 

-component  of  the initial excavation point at each 

level is determined in the reference coordinate 

system. 

4.3 A c l o s e d - f o r m  solut ion 

With the x0-component of the initial digging 

point obtained in Sec. 4.2, we assume that Yo, Zo 

are provided from the excavation point determi- 
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nation algorithm. Now consider the transforma- 
tion matrix between the 3rd coordinate frame and 
5th coordinate frame to incorporate the inclina- 
tion of the rotating drum from the boom. The 
position vector O of the center of the drum in the 
5th coordinate frame can be converted to a vector 
in the 3rd coordinate frame as follows: 

3 p = a T44 Ts5 P 

=~ cosr 0 sin~b cos~b 0 sine 
I -1  0 d4 0 1 0 6 

0 0 1 0 0 0 1 
[ d6sin 95cos 95 ] 

r 95/ 
[ -des in  95+d~ ] (10) 

1 

where ap  denotes the vector of the center of the 
drum in the 3rd coordinate frame. Now by using 
the geometry in Fig. 6 with Eq. (10) the values 
of points O, 02 and O' are obtained in the 2nd 
coordinate frame as follows. 

O =  (aa+d6sin qScos 95, -d6sin  95 q-d4, 
d6cos 95cos 95) 

O s  (0, 0, &cos qScos 95) 
O ' - -  (aa+d6sin ~bcos 95, dGCOS qScos 95) 

where O2' denotes the translation of the origin of 
the 2nd coordinate frame to the direction of the z2 

axis by d6cos qScos 95. O' refers to the projection 
of O on the x2z2 plane. The upper portion in Fig. 
6 shows the projected coordinate frames of the 
boom on the yoz0 plane(ground),  and the lower 
portion in Fig. 6 indicates the zz-axis (The shape 
of the drum needs to be an ellipse). 

The joint variable 03 can now be calculated 
from the geometry as in Fig. 6 as follows: 

0 a = ~ - - a = a t a n 2 ( s i n  ~, ~ ~ )  
- a t a n 2 ( - d a s i n  95+d4, aa 
+d6sin qScos 95) (1 1) 

where 

X3 

u < 

a3 

X2 / 

d~cos,~cos r 

> - - ~  02 
Z2 

�9 a a + d s s i n  ~cos  r 

~  ~ 
d2 

Ground 

Fig. 6 Geometry for obtaining 03 

0,-=atan2(B, A) _+atan2(x0- C, 

]A2 + B 2 -  (xo-  C) 2) (12) 

02=-atan2(E,  D) +-+ atan2 ( ] D2 + E 2 -  yo2 , yo) (13) 

dl-z0-cos &[cos 0a{ a6cos ~bsin 0r+sin ~b(&cos {b-a6 
sin r 0T) } 

-sin 0a(-a6cos ~bcos & - & s i n  ~,b +d4) +aacos 031 
+sin 02{ cos ~b(&cos ~b-a6sin ~bcos Or) 
-a6sin ~bsin Or } (14) 

where 

A = a 6 s i n  03cos ~b 
B = a 6 ( s i n  95sin 95sin 0a+cos 95cos Oa) 
C =  &sin qScos 95sin 0 a - & s i n  95cos 0s 

+d4cos 03+aasin 0a+d2 
D = c o s  r  r  r Or) 

a6sin 95sin Or 
E = c o s  03{ a6cos ~bsin 0T+sin qS(decos 95 

--a6sin 95COS Or) } 
+ s i n  &(a ,cos  95cos & + & s i n  95 
- d4) + aacos 03 

h-d2 sin 
/~=,/(aa+desin r r (d~in ~b-{- d4) 2 

Finally, from the forward kinematics Eqs. (2) 
(4), a closed form inverse kinematics solu- 

tion is obtained as 

5. Inverse Kinematics (Approach #2) 

In this section we investigate the inverse 
kinematics problem for a given arbitrary excava- 
tion point in space. 
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5.1 Derivation of a plane equation 
As was seen from Eqs. ( 2 ) ~  (4), the number 

of joint variables is one greater than the number 

of equations. Therefore, one more equation is 

necessary in order to acquire a closed-form 
inverse kinematics solution. In this paper we 

explok an extra equation using the fact that the 

circle ,connecting the tips of buckets should con- 
tact the surface of the bulk. 

First we derive a plane equation which approx- 

imates the surface around the excavation point. 
This is because it is not possible to obtain an 

exact surface equation for the whole bulk. There- 
fore, it is reasonable to approximate the area near 

the excavation point as a plane. The plane equa- 

tion can be obtained by the least squares method 

by utilizing 8 adjacent points near the excavation 
point. Let the normal vector at the excavation 

point be ~ =  (nx, ny, n~). Then the plane equa- 
tion can be written as 

nx 'X  + n y ' y +  n ~ ' z = l  (15) 

Substkuting 9 points as in Fig. 7 into (15) 
yields a matrix equation as follows: 

Xo Yo Xo ] 

I :lF:]; 
Xs Ys Zs 1 

In a simplified form 

W ' ~ = u  

where W is a 9 •  3 matrix, B is a normal vector, 
and u is a column vector with all element equal 

to 1. The column/row vectors of W are indepen- 
dent, and therefore W r W  is a symmetric square 
matrix and its inverse exists (Strang, 1988). 

Hence the normal vector ~ can be obtained as a 
solution to the normal equation as follows (Luen- 

berger, 1969): 

~ =  ( W r W )  ~ w r u  (17) 

5.2 Constraint equation and linear approxi- 
mation 

Since the information about the profile of the 
bulk is now incorporated in Eq. (17), we uti- 

lize the fact that the circle connecting the tips of 

buckets should contact the plane. As is shown in 
Fig. 8, the z6-axis of the 6th joint coordinate 

system should be perpendicular to the normal 

vector. The following constraint equation is 
obtained: 

///y[COS 02(COS ~sin Csin 0 ~ - s i n  r  0~) 

- s i n  02{ cos 03" (sin ~bsin r 0 r + c o s  ~b 
cos 0r) - c o s  Csin &sin t?r }J 

+ nz" [cos 02{ cos 0a(sin qSsin Csin 0r 
+ cos r  0r) 

- c o s  Csin &sin 0r } +s in  02(cos qSsin r 

sin 0 r - s i n  ~bcos 0r) l 
+ nx[isin 03. (sin qSsin Csin 6Y+cos q5 

cos 0r) + c o s  r  &sin 0rl = 0  (18) 

The forward kinematics Eqs. (2',)- (4) and 
the constraint Eq. (18) allow the analysis of  

inverse kinematics. However, it is impossible to 

obtain a closed form solution from the above 4 
equations since they involve trigonometric func- 

tions and are highly nonlinear. In this section we 
propose instead an approximate solution using 

d i k  
I F  

Ai, 

Fig. 7 

/ ~ ( x o ,  Yo, zo) 
~ / Excavation Point 

d m" f ~  A b, 
I F  k . J  �9 �9 

d l k  
I F  

Selected 8 adjacent points for the least 
square approximation 

. . . . . .  u r f a c e " ' "  " ~ " '  
B u c k e ~  

........ . . . x ~ /  xa x6 

Fig. 8 Orthogonality between z6-axis and 



636 Keum-Shik Hong, Young-Min Kim and Chintai Choi 

the Newton-Raphson method. Let us rewrite (2) 

--(4)  and (18) as follows: 

xo=A(d~, 02, 03, Or) 
yo = A ( d,, 02, 03, Or) 
z o = / a ( d l ,  0z, 03, Or) 
0=A(d~,  02, 03, Or) (19) 

We expand (19) at some initial conjectured esti- 

mate as O 0 = [ d  ~ 0 ~ 0 ~ 0~ r, and eliminate 

higher terms beyond the linear term. Hence we 

have 

8fl Sfl Sfl Sf, 
c~dl OOz 0~03 8Or 

8d~ 8& 8& 80, A& So k + (20) 
f3 8/3 Of 3 8f3 ?A A& 
A Oo 8d, 802 803 80, A Or 

af4 af4 8f4 af4 eo 
G3dl 00~ 8& 80r 

In abbreviated form 

X = f ( O o )  + J  (@o) d6) (21) 

whereX [Xo, yo, Zoo, 0]rrepresentsadesiredend - 

effector location. Therefore 

d O = J - ' ( O o ) ( X  f(O0))  (22) 
Recursively updating the estimate 6) within a 

given error bound, a better approximation can be 

obtained as follows (Press et al., 1987): 

AO~+l=J-*(Oi) ( X - f ( O i ) ) ,  i = 0 ,  1, 2, 

O i + 1  = ~ , '  Jr- A ( ~ / + 1  

If IldO~+,Ll<_e, then stop. (23) 

6. Comparison 

We compare two solutions obtained through 

the two approaches in Sec. 4 and 5 by simulations 

and graphical representation. Figure 9 shows the 

3-dimensional profile of an iron ore scanned 

through by a laser sensor. Its 2-dimensional 

contours projected to the ground are shown in 

Fig. 10. The following parameters are used for 

numerical computations: d2= 9, 500 mm, a3= 

46,100 mm, d4=l,100 mm, d6= 1,226.8 mm, a6=  

2,800 mm, q~= 2~ r 1 7 6  The inverse 

kinematics solutions for the two methods for a 

desired landing point on the contour of a level 

800 mm high are tabulated below. Since the 

inverse kinematics solution using the first 

approach is closed-form, the forward kinematics 

solution will provide the exact same excavation 

�9 �9 �9 �9 � 9  �84  "�9 : 

12ooo-~ ......... ........ - i  ..... ' ~  
| 

,oooot .................... . ...................... / , , d ~ i  ............. ....-.-..-i... ......... , 
* o o l  ..................... . ..................... ~ ~  .................. i ................ ~ ........ " ....... 

~'~1 .......................... . . i . - . . ~ ~ i ~ / I R - - - Y  ............................ ""i 
o ......................... - . . i  ........ i ................. 

-3 5 
x 10 4 -2 4 

-1 3 x 10 4 

y(mm) 0 2 
z(mm) 

Fig. 9 3 Dimensional profile of an iron ore heal5 



Inverse Kinematics of  a Reclaimer: Closed-Form Solution by Exploiting Geometric Constraints 637 

x 10 4 

-4 . y  .................. : y  ........................................... ~ .......................... . . . . . . . . .  

-3.5 ................................. ~ .................................... 
L _  

i . . . . . . . . . . . . . . . . . . . . . . . . .  

-3  ...................................... ~Z" . . . . . .  

3800rnm 
-2.5 ................... 

- . _  " - - -  i 8~ 
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Fig. 1O 2-Dimensional  projected contours of the iron ore heap in Fig. 9 (yo-z0 plane) 
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Fig. 11 View of  the two rotating disks contacting an ore heap in Fig. 9 
(View direction (x, y, z ) =  (0, - [ .  - 0 . 4 4 ) )  

point .  ,On the  o ther  h a n d  the  second a p p r o a c h  may yield some numer ica l  error .  It is r emarked  
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T a b l e  1 Given excavation point (800, -- 19545, 27898) mm 

Variables Inverse Kinematics Forward Kinematics to 05 

dl (mm) 02 (rad) 03 (rad) Or (rad) x (ram) y (mm) z (mm) 

Method 1 -15316.0 0.457 -0.171 0.816 2998.3 -19088.0 26226.0 

Method 2 -15444.0 0.455 -0.173 0.979 2893.4 [ -19004.0 26119.0 I 

that the location of the drum circumference in the 

bulk is as important as getting near the given 

excavation point, since an irregular material pile 

may cause the system to overload. Hence, the 

forward kinematics solutions have been obtained 

for the center of  the drum instead of the excava- 

tion point. If the given material profile is regular, 

not much difference is found. However, the sec- 

ond approach yields much more uneven results 

compared to the first approach. This is due to the 

fact that the second method utilizes the normal 

vector at each point, which is highly location 

dependent. Figure I I shows the side view of the 

disks contacting the surface. In Fig. 11, • denotes 

the location of an excavation point, and C) 

indicates the forward kinematics solutions by 

both approaches 1 and 2. The solid big circle 

indicates the location of the disk obtained by 

approach 1, and the dotted circle shows the loca- 

tion of the disk obtained by approach 2. The 

authors recommend the first approach for a real 

application in the storage yard. 

7. Conclus ions  

In this paper the inverse kinematics problem of 

obtaining joint  variables of a reclaimer has been 

investigated for the first time. For  a desired end- 

effector location in space the forward kinematics 

provide 3 equations. However, the number of 

involved joint  variables is 4, yielding kinematic 

redundancy. Two approaches are investigated for 

the solution of the inverse kinematics. The first 

approach assumes knowledge of the drum height 

while slewing, and then determines the remaining 

jo int  variables from the forward kinematics equa- 

tions. A closed-form solution is obtained for the 

first approach. The second approach is based on 

the geometric constraint that the excavating 

bucket must contact the surface of the bulk. A 

closed-form solution is not found for the second 

approach. Instead an approximate solution to the 

nonlinear inverse problem is suggested. 
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